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SUMMARY 

The thesis entitled "Studies on inorganic ion exchanger 

and ligand exchangers comprises of five chapters. Chapter I 

is general introduction covering the background of the work 

presented in this thesis. 

Ion exchange is a wide spread phenomenon in analytical 

chemistry. New ion exchange materials are being synthesized 

at a rapid rate. Ion exchange processes are useful in 

separation, removal and recovery of ionic species. These 

processes may also find use in ion transport device , fuel 

cell preparations and catalysts development. Looking for the 

growing interest in the physical chemistry of ion exchange, 

emphasis has been given to the thermodynamic, kinetic and 

adsorption studies on an ion exchanger. 

Theory of ion exchange can be understood by the 

knowledge of thermodynamics. For the better understanding of 

thermodynamics various theories and models have been 

de-Mieloped. (The ion exchange equilibrium can be represented 

by a general formula as: 

7 + B '̂  1 + A 

where bar represents the exchangeyphase. The thermodynamic 

equilibrium constant can be written as: 



Ka 

"̂ A ^B 

This Ka value is further useful in the calculation of 

various thermodyanmic parameters like A G » AH & AS. 

Although thermodynamic studies of ion exchange helps in 

investigating the conditions at equilibrium but it provides 

no information about the mechanism of exchange from one 

state to the other and the time required there on. Thus 

kinetic studies are performed to take these factors into 

consideration. Kinetics depends on the surface area and 

hence, the particle size and macroporosity of the exchanger. 

The possible rate determining steps may be (i) chemical 

exchange (ii) particle diffusion and (iii) film diffusion, 

depending on, which ever is the slowest step. Generally 

chemical reaction is a fast reaction so the rate is 

determined mostly by the particle diffusion or by film 

diffusion control. 

When a solution containing some solute comes in 

contact with a solid some of the solute is taken up by the 

solid and this phenomenon is called as "sorption". 

Sorption can be classified as physisorption or 



chemisorp-tion. Both of -them differ in their enthalpies. To 

understand the nature of adsorption the most convenient way-

is the plotting of adsorption isotherms. 

The second chapter /deals with the equilibrium studies 

2 + for the sorption of Cu on lanthanum diethanolconine a new 

ligand ion exchanger", an attempt has been made to develop a 

ligand ion exchanger by combination of lanthanum nitrate and 

diethanolamine. The material so obtained behaves as a ligand 

exchanger, though basically an anion exchanger. To 

2+ understand this behaviour, the sorption of Cu"̂  on La-DEA is 

studied in detail. Rate of sorption is fast at the start and 

slows down reaching to a maximum value after 42 hrs. The 

equilibrium studies were performed by batch process, shaking 

for a period of 42 hrs. Sorption isotherms were obtained by 

plotting X/ni vs ce. These plots show the variation of 

sorption with the increasing temperature revealing a very 

complex behaviour. Regression coefficient (R) values for 

langmuir equation and Freundlich equation show that sorption 

2 + of Cu on La-DEA obeys langmuir equation because R 

approaches to unity in this case and not in Freundlich 

equation. Equilibrium constant for adsorption were obtained 

and various thermodyin^mic parameters viz. Z\H, i^S, AG are 



computed using least square method on VAX-11 computer. 

Isosteric enthalpies of adsorption A Hm were also computed 

for the different sets of temperature and for the whole 

range of temperature (20-80''C). For the physical 

characterization of this material TGA, IR, XRD and ESCA 

studies were performed. Thus it was concluded that the 

2 + sorption of Cu on La-DEA is neither solely chemisorption 

nor physiosorption but a combined process showing both the 

behaviour. An attempt has been made to give the tentative 

structure for this exchange material which helps in the 

elucidation of mechanism of sorption. 

The third chapter deals with the ion exchange 

equilibrium of some alkaline earth metal ions and some 

transition metal ions on Amberlite IRC-718 a chelating 

material. Amberlite IRC-718 is a weakly basic ion exchanger 

containing a chelating functionality due to the presence of 

imino acidic group. This chelating functionality has several 

active sites which coordinate with certain metal ions and 

render them tightly bound. This resin can function over a 

wide pH range hence this resin can recover heavy metal ions 

effectively, elution is 100% from this resin. 



Survey of the earlier literature shows that only a few 

thermodynamic studies have been made on organic ion exchange 

resins. Thus thermodyhamics of alkaline earths and some 

transition metal ions were studied on this resin in sodium 

form. A simple approach has been made using a batch process 

for equilibrium based on the mass action law modified in 

terms of activities. GluMkauf's method was used to calculate 

the solution activity coefficient. Thermodynamic equilibrium 

constant (ka) was calculated by Gaines and Thomas method 

after normalising the X^ values as Xĵ  never approaches 1 

in the present studies. 

Various isotherms plotted indicate that the bivalent 

cations are preferred the by the resin than the Na ion. The 

selectivity sequence is in the order. 

Ni^S Cu2+> Ba2+> Sr2-*-> Fe^S Ca^S Mg^S Pb^S Mn^S Ag^ 

The results of selectivity coefficient (Kc) indicate that 

with the increase in temperature the value of Kc decreases. 

Kc values also change with the increasing concentration 

irregularly. But the increase in Ka value with the rising 

temperature suggests that uptake of metal ions studied is 

favoured rather than Na ion at high temperatures. 



Posit-ive enthalpy and entropy changes suggest an 

endothermic process hence a stronger bond formation between 

the exchange matrix and the competing cations. Which is 

again confirmed by the negative value of free energy. 

The thermodynamics of cation exchange was al.so studied 

on Duolite ES-467 a ligand ion exchanger. Thus the fourth 

chapter describes the ion exchange equilibria of alkaline 

earth Cu'̂  and Pb ions on this chelating material. This 

exchanger contains and amino phosphonic group forming stable 

complex with the metallic ions. The advantage of Duolite ES-

467 over other chelating resins containing other chemical 

groups such as iminodiacetate group is an improvement in 

thermodynamics. Equilibrium studies were performed by batch 

process. Temperature influence on the exchange equilibrium 

of alkaline earth metal ions and Cu and Pb with Na has 

been described in this chapter for a temperature variation 

of 10-50''C. The exchange isotherms are plotted for the above 

mentioned ions and the results indicate a differential 

selectivity. The selectivity sequence is in the order. 

Mg2+ > Cu2+ > Ca2+ > Pb^^ > Ba^^ > Sr̂ "̂  

Various thermodynamic parameters were calculated and 

the results summarized in the text again indicate the 



preferential uptake of bivalent cations than the monovalent 

Na"̂  ion. 

The fifth chapter entitled "Mechanism of cation exchange 

on Amberlite IRC-718 a chelating material" comprises the 

studies of kinetics on a synthetic ion exchange resin 

Amberlite IRC-718 a chelating exchanger material. The 

exchanger has been taken in Na form and kinetics of 

exchange reaction of alkaline earths, Cu and Pb ions has 

been performed on this exchanger, U(t) values at four 

different temperatures 10, 30, 40 and 50°C with + l-'C 

variation have been determined and corresponding Bt values 

have been plotted as a function of temperature. The results 

have been compared to those obtained from Nernst Planck 

equation and the recent ash model. The mechanism is found to 

be particle diffusion control. Interruption test has also 

been performed to decide the exchange mechanism. 

Rate of exchange is directly proportional to 

temperature (t) and inversely to particle radii (r). Various 

parameters like effective diffusion coefficient (Di), 

diffusion coefficient (Do), activation energy (Ea) and 



8 

entropy of activation (as*) have been calculated. Knowing B 

and r values Di has been calculated by the formula: 

B r̂  

Plots of -log Di against 1/T give the Do values as 

intercept and the Ea values as slopes. The entropies of 

activation have been calculated by the equation: 

Do h AS* 
= __„ ... (2) 

2.72 d"̂  KT R 

Kd values in DMW for different metal ions studied were 

found in the order: 

Cu2+ > Pb2+ > Mg2+ > Sr̂ "̂  > Ba2+ > Câ "̂  

whereas the mobility rates and activation energy are in the 

order 

Bâ "̂  > Sr^^ > Ca2+ > Cu^^ > Pb2+ > Mg2 + 
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vity coefficient and thermodynamic 
equilibrium constant for Mg - Na 
exchange on Amberlite IRC-718. 

3.2 Equivalent fraction of Bâ "*", selecti- 122 
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5.18 Plot of time vs X (eq g) from moving 242 
boundary method for Na"*" - Sr 
exchange at different temperature at 
particle radius = 0.0176 cm. 

5.19 Plot of time vs X (eqS) from moving 242 
boundary method for Na"*" - Ca 
exchange at different temperature at 
particle radius = 0.0175 cm. 



Xll 

5.20 Plot of time vs X (eq5) from moving 
boundary method for Na - Mg^ 
exchange at different temperature at 
particle radius = 0.0175 cm. 

243 

5.21 

5.22 

5.23 

Plot of time vs X (eq 3) from moving 
boundary method for Na - Ba^ 
exchange at different temperature at 
particle radius = 0.0175 cm. 

Plot of time vs X (eq 3) from moving 
boundary method for Na - Pb 
exchange at different temperature at 
particle radius = 0.0175 cm. 

Plot of time vs X (eq 9) from moving 
boundary method for Na - Cu 
exchange at different temperature at 
particle radius = 0.0175 cm. 

243 

244 

244 

5.24 Plot of T vs t for Ca^* - Na"*" 
exchange at different temperatures on 
Affiberlite IRC-718 under the condition 
of particle diffusion. 

246 

5.25 Plot of r vs. t for Cû"*" - Na"*" 
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IRC-718 by Nernst Planck equation for 
Mĝ "*" and Cû "*" ions. 

log 
by 

5.36 Plot of log Di vs 1/T K on Amberlite 254 
IRC-718 by Ash model for Cu^* and Pb̂ "̂  

5.37 Plot of log Di vs 1/T K on Amberlite 254 
IRC-718 by Ash model for Bâ "̂  and Mĝ "̂  

5.38 Plot of log Di vs 1/T K on Amberlite 255 
IRC-718 by Ash model for Câ "̂  and Sr̂ "̂  
ions. 



Chapter-I 

MroductioH 



There are two phases of analytical researches viz. 

(1) To develop the techniques for chemical analysis. 

(2) To study the mechanism and theory of these techniques. 

Ion exchange is a wide spread phenomenon in analytical 

chemistry. New materials which exhibit ion exchange 

behaviour are being syntViesized at a rapid rate. Ion 

exchange processes are useful in separation, removal and 

recovery of ionic species. These processes may also find 

utility in ion transport devices fuel cell preparations and 

catalysts development. A better understanding of these 

processes can be developed by thermodynamic and Kinetic 

studies in order to relate theories with experiments. 

Theory of ion exchange and the underlying mechanism 

involved in the exchange process can be understood by the 

knowledge of thermodynamics and kinetics respectively. The 

thermodynamic study is of course the study of chemical 

equilibria. Rigorous thermodynamics however gives an 

inherently abstract treatment devoid of the mechanical or 

microscopic images which would lead one to a feeling of 

greater intimacy and understanding of the phenomena. The 

most successful treatments have been based on the model 

which incorporates observed physical characteristics. Yet 

properties of any particular model are reflected not only in 

the form of equations obtained but usually also in the physical 



interpretation to which these equations lead. In the case of 

organic exchanfiers the most successful models take into 

account the swelling observed when the resin change the 

environment or the ionic form. Hence various theories and 

models were developed in this respect having their own 

merits. 

In one approach attempts have been made to correlate the 

activities with some measurable quantities with the 

thermodynamic equations. The earliest approach was based on 

^mi-empirical or empirical equations to fit in experimental 

results. Gans gave the first quantitative formulation of 

ion exchange equilibria using the law of mass action in its 

simplest form which was extended by Kielland.^ The formula 

did not involve the concept of activity coefficient. A 

suitable choice of the general treatment was given by Qaines 

and Thomas. However Gregor was able to relate selectivity 

to hydrated ionic volumes in his semi- quantitative model. 

Rigid structure, negligible swelling pressure and a 

differential selectivity has made the study simple on 

inorganic exchangers. When an exchanger in counter ion A form 

is placed in a solution of counter ion B there will be an 

equilibrium set up for the distribution of A and B between 

the exchanger and the solution phase according to their 



n 

solec-tivity for the exchanger phase. At equilibrium this 

exchange process may be represented as 

"A + B (aq) ̂ =2i'B + A (aq) - (1) 

Where bar represents the ion in the exchanger phase. 

For the sake of convenience the effect of co-ion on the 

equilibrium may be neglected. The thermodynamic equilibrium 

constant for the above reaction may be written as 

TB a^ [B] [A] ^B . fA 

a^aB [A3 [B] i^^ . f g 

Where o represents the activity coefficient in the exchanger 

phase and f is the activity coefficient in the solution 

phase. Thermodynamic equilibrium constant is particularly 

used to find out the free energy changes of the ion exchange 

processes by the expression 

/̂  G = - RT In Ka ... (3) 

The ionic selectivity is governed by the lowering of free 

energy of the system which gives the information about the 

preferential uptake of the counter ions by the exchanger. Ka 

values at different temperatures give the value of enthalpy 

change. Changes in the number and the strength of the bonds 

involved in the ion exchange reaction is directly related to 



enthalpy changes. The ion exchange reaction (equation-1) 

provides that structural changes within the exchanger are 

small, the most important factor influencing the entropy of 

equally charged ions will be expected to result from changes 

in liberation entropy may also play an important role and 

the overall entropy will reflect changes in randomness in 

the ion exchange reaction, the driving force being the 

tendency for the system to go to the most probable i.e., the 

most random state. 

The ion exchange equilibria of alkali metal ions was 

studied by Larsen and Vissers and Gal and Ruvarec on 

amorphous sirconium phosphate of various compositions and 

properties. Ion exchange thermodynamic studies have been 

extended on more defined semi-crystalline and crystalline 

fi-1 fi 
zirconium phosphate for alkali cations." ^ The 

thermodynamics was interpreted in terms of the bonding 

between alkali metal and the exchanger matrix. Recently the 

ion exchange equilibria on Co(II) hexacyanoferrate (II) have 

17 been made by Ceranic and Adamovic. Similar studies have 

also been reported on hydrous zirconia acting as anion 

exchanger by Nancollas. ° Studies on zeolites have also been 

made to a greater extent. 



5 

Thermodynamic studies for alkali metals on 

iQ 20 21 
ferricantimonate ' niobium arsenate, Zirconium 

22 23 

triethylamine, thorium tetracyclohexylaroine were made 

in our laboratories. Some of the equilibrium studies on 

different ion exchange materials with various systems and 

their parameters are given in table 1.1. 

Thermodynamic studies have also been performed on 

various anion exchangers. The reversibility of Br-NOg 

exchange on hydrous zirconia was demonstrated by Kraus. 

The thermodynamics of Cf-NO^, C1-SCNT and SCN^NOg exchange 

on hydrous zirconium oxide was studied by Nancollas and 
Af^ Art 

Paterson. Ruvarec and Tartanj studied the thermodynamics 
"* 2" -* oC 

of CI and SO^ in NO3 form of hydrous airconia at 25-80 

Thermodynamic equilibrium constant was evaluated and then 

the other parameters. The use of mixad solvent systems like 

methanol - water system changes the value of A Ĝ -̂ H ̂  AS on 

hydrous Zirconia and hence the selectivity coefficient is 

affected. Misakard Mikhail ^ studied the thermodynamics of 

NO3 - Cr^NO^ - Br* , NO3- SCN" exchange on hydrous Ceria. 

Various models like Eisenman model, may throw 

some light on the anion exchange phenomenan 



»-( 
• 

TH 

« 
H 
A 
<0 

(0 
D 
O 
H 

s 
> 

s 
S3 

o 
0) 

u 
4) 

(0 
3 
0 

•H 
!̂  
> 

0) 
•H 

(0 

0) 
S 
(D 
•P 

03 

« 
•H 
>̂  
<0 
•p 
(0 

s 

c 

o 
X 
(0 

o 

r-l O 
C/3 2 

•xj* 

^1 
DO (4 
CX) 
•H -rl 

« 
6 -P 

0 
<H 9) 

U) 
0] C 

<u <2 
CO 0 

05 

< 

c a 

33 
< 

CO 
CM 

a 

s 
U OH-
4) O -H 

4) 

•H OH­
IO (0 

V Z 
tlO > , 
fl -P A 

^ M-
0 'H n 
>« - P O 
« o 

© A 
CS rH 
0 4)+ 

M 10 bd 

s: 
o 
10 

CV3 

o 
03 

< 

T3 
C 
m 

o 
SB 
< 

C5 

00 
CM 

« 

> s 
4) V4 

flj M 0 

•d M 0 
u V ci 
» -p «H 
6 0 «H 
0 w -H 

fa -H TJ 

4} 
tiO 
fi 
a] 
Xi 
0 
>< 
4) 

+ 
ffl 
1 

+ 
(0 
O 

1 
+ 

10 

z 

+ 
m 

1 

+ 
CM 

CM 

o a 

+ 
•H 

>J 
1 

+ 
txi 

" 
+ •rl 

1 
+ 

10 

z 
-4-

+ . w 
JiJO 
1 1 

+ -t-
(0 10 

z z 

+ 
X 
1 

+ 
t:d 

+ 
3 

1 
+ 
A 
« 

m 

+ S 
J + 
n O 

05 
CM 

o 

< 

c 
10 

o 

X 
< 

z 
I + 

SB 

IS) 
en 

S 
(0 

I 
X 

c 
10 

O 10 

0 <0 
10 ^ 

M 10 

+ 
X 
I 

4-

+ 
<0 z 

g 
3 

•H 

c 
0 
t) 
M 

4) 
C 

•H 4) 
rH -P 
rH <0 
m A 
^^ Pt 
(0 <0 
S 0 
? ; j 3 

O 0* 

4) 
+5 
(0 
^ 
P< 
(0 
0 

P< 

e 5 •H 

c 
0 
0 
1^ 

•H 
N 

g a •H 

c 0 
0 

u •H 
t4 

4) 
ti 

•H 
iH 
iH 

4) 
•P 
(0 

(0 X 
+3 
(0 
>» 

Oi 
10 
0 

<̂ JS 

o p< 

4) 
•P 

<a rfi 
P4 
(0 
0 

J 3 
Oi 

3 •H 

c 
o 0 
u •H 

tsi 
1 

g 

3 •H 
<3 
0 
0 

u •H 

0) 

c •H 
rH 
rH 

(0 
43 
<0 

(0 A 
+J 
10 

s >4 

o 

A 
10 
0 
A 
Oi 

4} 
•P 
10 

A 
Oi 
(0 
0 

A 
Pi 

e 1 
a 0 •H t J 
c 1 
0 
0 

u •H 
N 
1 

CO 

0 
•H 
+J 
4) 

a 
•H 10 

•^-^ 
(3 

0 

§ -p 

•H 
r H >V 
•H <0 
3 *̂ 

M X 

+ 
CM 

03 
I + 

eg 

u 
03 

T> 

CM 
« 

+ 
bd 

+ " 
At 

Z 

+ * 
•H 

I 
0 

I 

b 

CM CO to CO 00 



a 
o 
0 

0 
d 
CO u 
V 

<H 
(0 

03 

in 

« 
6 

10 
3 
0 

•H 

> 

• H 
- d 

3 

in 

in 
g 
« 
in 

(0 
• H 

u 
-P 
(d 
s 
1) 

(0 
ja 
0 
X 
<D 

C 
0 

W 2 

^ 
CO 

0 

CO 

<3 

TJ 

<d 

0 

x 
<1 

tk 

0 

<1 

+ X 
1 

+ in 
O 

-O 
C 
« 

+ U3 

+ * 
•ri 
J 

a 
3 

•H 
C 
0 
0 
u •H 
N 

4) 
C 

•H 
H 
1—1 

iO 
-P 
in V 
M^ )^ Id 

^•^ 1 Oi 
•H in 
£ 2 a) ,£3 

CO ft 

U5 
CO 

0 

<J 
T3 
C 
<0 

0 

o 
< 

±_, U j 
1 

+ 
in 
o 

• 
+ Si 

o: 
1 

+ Hi 
U 

1 
0 

T) 
1 

•>* 
n 

bd 

+ 
in 

O 
1 

+ X 

TJ 

§ 
+ 
X 
1 

+ 01 
O 

g 
3 

•H 
c 
0 
0 
9̂4 

•H 
^] 

4) 
ti 

•H 
f - 4 
i - l 

« 
+3 
in <o 
h-P 
>^ n) 
0 4 : 
1 P I 

•H HJ 
fi 0 
vx W ft 

CM 
C O 

14 

3 
0 
3 
V4 

+» in 

u 
0) 

id 

tJ 
« 
•P 
0) 

rH 

0 
0 

+ 
X 
1 

+ 
td 

« 
•p 
id 

X 
ft 
in 
0 

X 
ft 

g 
3 

•H 

a 0 
c; ^ 

•H 
M 
1 

CD 
CO 

0 

X 
<l 

-0 

a a 
0 

C3 
< 

+ 
(0 

0 
1 

+ t^ 

A 

+ in 
0 

+ 
(d 
z 

> 

+ in 
0 
1 

+ •H 
uJ 

1 
0 

t3 
1 

• * 
CO 

,_, 
0 
0 
00 

*«^ 

0 

< 

+ 
X 
1 

in 
0 

1 
0 

TJ 
1 

t -
CO 

CO 
< 

X 

<l 
•. 

C3 

< 

r-l 

+ " 
CVJ 

3 
0 

A 

+ CM 
•H 
Z 

* 
+ + CV] OJ 

0 a 
0 0 

- t » 
+ c CJ « 

j : : 

ICM 
+ c 
X N 

T3 
•rt 
CJ 
Id 

0 
•H 

c 0 
g •H 

•p 
c 
Id 

(D 
a 

•H 
i-H 
i H 

<d 
4J 
in 
>v 
u 

0 

CO 
CO 

in 

-d 
3 
•P 
in 

« N 
u (d 
a u 
(0 1 

2.x 0" 

n >, 
, +> 
>»-H 
+3 r-( 
•H .rt 
> 4 3 

•H ^ 
+* 10 
0 U 
4) « 
'lil > 4) « 
CO U 

1 

+ 

a> 

+ 
OJ 

14 
CO 

. 
+ 
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but, certain factors like non coulombic electrostatic 

attraction and oxide entropy changes have been ignored in 

this model. 

Although thermodynamic studies of ion exchange helps in 

investigating the conditions at equilibrium, but it does not 

provide with any information about the mechanism of change 

from one state to the other and the time required there on. 

The kinetics of exchange takes these factors into 

consideration. 

The kinetics depends on the surface area of the ion 

exchange particles. Thus where diffusion rate or Kinetics 

are of importance. Particle size and macro porosity of the 

exchanger become important parameters. The Kinetics of a 

simple homogeneous chemical reaction is governed by their 

differential rate of reaction depending on the disappearance 

of product or formation of reactant with time. 

A X + By ^=^ product 

Rate = K • X^ • y^ 

where K is the rate constant and (X) and (y) are the 

concentrations of reacting species. The powers A and B are 

the orders of the reaction with respect to X and Y 

respectively. 
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The Ion exchange process is however quite different in 

many respect from such simple chemical reactions. In the 

first case it concerns a reaction which involves the 

transport of ions from solution to exchanger and vice versa 

i.e. ion exchange process constitutes a solid phase in 

aqueous solution and hence is heterogeneous. Secondly in 

dilute solutions there is effectively no electrolyte 

penetration into the exchanger and hence the co-ion has no 

part to play in the overall reaction mechanism, and thirdly 

the electroneutrality is maintained every time, hence, the 

exchange process is stoichiometric, this coupling of the 

flows of the entering and leaving ions simplifies the 

treatment of ion exchange kinetics. 

For an exchanger in A'form placed in an solute with B 

as counter ion, following steps may be considered. 

1. Migration of counter ion A' from exchanger to the 

adhering film of the particle 

2. Migration of A' from film to solution 

3. Chemical reaction between A and B' 

4. Migration of B from solution to film 

5. Migration of'B'from film to the particle. 

Since the slowest step is the rate determining step 

hence all the above steps are considered. Thus three 


